If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2-8t+64=0
a = -16; b = -8; c = +64;
Δ = b2-4ac
Δ = -82-4·(-16)·64
Δ = 4160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4160}=\sqrt{64*65}=\sqrt{64}*\sqrt{65}=8\sqrt{65}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8\sqrt{65}}{2*-16}=\frac{8-8\sqrt{65}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8\sqrt{65}}{2*-16}=\frac{8+8\sqrt{65}}{-32} $
| 5x+1=6+4 | | 9X+-4=3x | | 11x-5x+7=25 | | 6x=67 | | 2(x+4)=-3(x+4) | | -6x-18=-132+× | | z4+ 6= 10 | | 6y-2y+4=12 | | 16-7d=30-2 | | 3(x-5)=5x+3x+20 | | 7(x-4)+5=-23 | | x+1/x=5/3 | | 169-x²=0 | | 3(5X+2)=6x-6 | | 3(x-6)-7=-7(-3x+1)-6x | | 6(4-5x)=-5(10-4x) | | x=9+9+0.5x | | 5(3x−4)=2x+7+4x | | 6x+3=45-2x | | 4.6=2.5-0.5y | | -2(-7v+6)-5v=3(v-3)-6 | | 20=k-7 | | 20=k | | 0,8x-5=-12+0,6× | | 2(x+7)=6x+12 | | 8x^2+30=2x | | -5c+9c=(-20) | | 8x2+30x=2x | | 3(2x-3)+4x-3=5x-4+3x | | -7-s=-6s | | -5(5.25+3.1x)=-6.2(2.5x+1.9) | | 8x-46=6(x+5) |